Role for netrin-1 in sensory axonal guidance in higher vertebrates.

نویسندگان

  • Tomoyuki Masuda
  • Chie Sakuma
  • Hiroyuki Yaginuma
چکیده

During development, dorsal root ganglion (DRG) neurons in higher vertebrates extend their axons centrally to the spinal cord through the dorsal root entry zone (DREZ) and peripherally to muscle and skin targets. After entering the spinal cord, DRG axons project into the dorsal mantle layer. In this review, we focus on evidence showing the role for netrin-1 in forming sensory axonal trajectories. Netrin-1 is a diffusible axonal guidance molecule that chemorepels developing DRG axons. When DRG axons project toward the DREZ, ventral spinal cord-derived netrin-1 prevents DRG axons from projecting aberrantly toward the ventral spinal cord. At later stages, the dorsal spinal cord cells transiently express netrin-1. This dorsal spinal cord-derived netrin-1 prevents DRG axons from invading the dorsal spinal cord during the waiting period. Together, the data reviewed provide strong evidence that netrin-1 plays a crucial role in sensory axon projection during development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Netrin-1 Signaling in Nerve Regeneration

Netrin-1 was the first axon guidance molecule to be discovered in vertebrates and has a strong chemotropic function for axonal guidance, cell migration, morphogenesis and angiogenesis. It is a secreted axon guidance cue that can trigger attraction by binding to its canonical receptors Deleted in Colorectal Cancer (DCC) and Neogenin or repulsion through binding the DCC/Uncoordinated (Unc5) A-D r...

متن کامل

Localization of the netrin guidance receptor, DCC, in the developing peripheral and enteric nervous systems

Over recent years the secreted guidance cue, netrin-1, and its receptor, DCC, have been shown to be an essential guidance system driving axon pathfinding within the developing vertebrate central nervous system (CNS). Mice lacking DCC exhibit severe defects in commissural axon extension towards the floor plate demonstrating that the DCC-netrin guidance system is largely responsible for directing...

متن کامل

The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons.

Migrating axons require the correct presentation of guidance molecules, often at multiple choice points, to find their target. Netrin 1, a bifunctional cue involved in both attracting and repelling axons, is involved in many cell migration and axon pathfinding processes in the CNS. The netrin 1 receptor DCC and its Caenorhabditis elegans homolog UNC-40 have been implicated in directing the guid...

متن کامل

Netrin-3 protein is localized to the axons of motor, sensory, and sympathetic neurons

The netrin family of axon guidance cues has been shown to play a pivotal role in the guidance of a variety of axon projections during embryonic development, both in the vertebrate and invertebrate. While the guidance potential of netrin-1 has been examined in depth in many regions of the developing mouse brain very little information is available on the expression and activity of netrin-3. Here...

متن کامل

Netrin 1 and Dcc signalling are required for confinement of central axons within the central nervous system.

The establishment of anatomically stereotyped axonal projections is fundamental to neuronal function. While most neurons project their axons within the central nervous system (CNS), only axons of centrally born motoneurons and peripherally born sensory neurons link the CNS and peripheral nervous system (PNS) together by navigating through specialized CNS/PNS transition zones. Such selective res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Fukushima journal of medical science

دوره 55 1  شماره 

صفحات  -

تاریخ انتشار 2009